Minima: meaning, definitions and examples
📉
minima
[ ˈmɪnɪmə ]
mathematics, economics
In mathematics and economics, 'minima' refers to the plural form of 'minimum', which indicates the smallest quantity or lowest value of a function or dataset. In optimization problems, identifying the minima of a function is crucial for finding the most efficient solution. Minima can be local, meaning they are the smallest value within a nearby range, or global, meaning they are the smallest value over the entire domain of the function. The concept of minima is important in various fields such as calculus, statistics, and operations research.
Synonyms
least, lowest point, minimum, smallest quantity.
Examples of usage
- We found the local minima of the function during our analysis.
- In the study of supply and demand, we examined the minima of the cost curve.
- The process of gradient descent aims to reach the global minima.
- Identifying the minima helps in optimizing performance in machine learning algorithms.
Translations
Translations of the word "minima" in other languages:
🇵🇹 mínimos
- mínimos necessários
- menor quantidade
🇮🇳 न्यूनतम
- सबसे कम
- न्यूनतम मात्रा
🇩🇪 Minimal
- das Minimum
- geringste Menge
🇮🇩 minimum
- jumlah minimum
- paling sedikit
🇺🇦 мінімум
- найменше
- мінімальна кількість
🇵🇱 minimum
- najmniejsza ilość
- najniższy poziom
🇯🇵 最小
- ミニマム
- 最小限
🇫🇷 minimum
- le plus bas
- la plus petite quantité
🇪🇸 mínimo
- la menor cantidad
- mínimo necesario
🇹🇷 minimum
- en az
- en düşük miktar
🇰🇷 최소
- 최소한
- 최소량
🇸🇦 حد أدنى
- أقل كمية
- الحد الأدنى
🇨🇿 minimum
- nejmenší množství
- nejnižší úroveň
🇸🇰 minimum
- najmenšie množstvo
- najnižšia úroveň
🇨🇳 最小
- 最小值
- 最低限度
🇸🇮 minimum
- najmanjša količina
- najnižja raven
🇮🇸 mínimum
- minnsta magn
- lægsta magn
🇰🇿 минимум
- ең аз
- ең төменгі мөлшер
🇬🇪 მინიმუმი
- ყველაზე ნაკლები
- მინიმალური რაოდენობა
🇦🇿 minimum
- ən azı
- minimal miqdarı
🇲🇽 mínimo
- la menor cantidad
- mínimo necesario
Etymology
The term 'minima' originates from the Latin word 'minimum', which means 'least' or 'smallest'. The use of 'minimum' in mathematical contexts began in the 18th century, as calculus developed, particularly with the work of mathematicians like Isaac Newton and Gottfried Wilhelm Leibniz. They explored concepts of maxima and minima while studying curves and functions. Over time, the term evolved and was adopted in various scientific disciplines, including economics and statistics. The usage of 'minima' as the plural form became standard in English mathematical vernacular, reflecting the increasing complexity of analysis in these fields. Its application spans numerous areas, including optimization, operations research, and data science, making it a fundamental concept in both theoretical and applied mathematics.